PROBLEM SET \#8

Issued: Tuesday, Oct. $22^{\text {nd }}, 2013$
Due: Tuesday, Oct. $2^{\text {th }}$, 2013, 6:00 p.m. in the EE 140/240A homework box

1. Consider the circuit in Fig. PS8.1. Assume the tail current source is a simple current mirror, and the transistors have parameters $\lambda=0.1 \mathrm{~V}^{-1}$ and $\gamma=0$. The transistors are nominally biased so that:
$I_{D-n o m}=2 \mathrm{~mA}, g_{m T a i l}=20 \mathrm{mS}, g_{m l, 2}=10 \mathrm{mS}, g_{m 3,4,5,6}=5 \mathrm{mS}, g_{m 7,8}=10 \mathrm{mS},\left|V_{t h}\right|=0.5 \mathrm{~V}, V_{D D}=5 \mathrm{~V}$.
(a) Determine the DC value of input and bias voltages $V_{B 1}, V_{B 2}$ and $V_{B 3}$ for maximum output swing.
(b) Calculate the output slew rate when the amplifier is used as a unity-gain circuit and there is 1 pF capacitor connected at the output node.
(c) Find the open-loop voltage gain $A=V_{o u t} / V_{i n}$ for $A_{d m}, A_{c m}, A_{d m-c m}$, and $A_{c m-d m}$.
(d) Repeat part (c) assuming the amplifier is mismatched such that $\left(I_{\left.D-M 1,3,5,7-I_{D-M 2,4,6,8}\right) / I_{D-n o m}}=\right.$ 2%, and $\left(g_{m l, 3,5,7-} g_{m 2,4,6,8}\right) / g_{m, n o m}=5 \%$.

Fig. PS8. 1
2. Write an expression for the common-mode input range of the op amp in Fig. PS8.2 in terms of $V_{D D}$ and $V_{S S}$. Assume that the transistors have $\left|V_{t}\right|=1 \mathrm{~V}$, and ignore the body effect. Also assume that the biasing is arranged so that $\left|V_{o v}\right|=0.2 \mathrm{~V}$ for each transistor except M_{9}. Finally, assume that M_{1} and M_{2} are biased at the edge of saturation by M_{9} and I_{C}. If the common-mode input range is required to be no less than 0.2 V , what is the minimum supply difference, $V_{D D^{-}}$ $V_{S S}$?

Fig. PS8. 2
3. For the circuit in Fig. PS8.3(i):
a) Find the transfer function and sketch a Bode plot assuming the amplifier is ideal.
b) Find the transfer function and sketch a Bode plots if

$$
A(s)=\frac{A_{0}}{1+\frac{s}{\omega_{p}}}
$$

For the circuit in Fig. PS8.3(ii):
c) If the amplifier offset is $V_{O S}=1 \mathrm{mV}$, calculate the value of R_{f} such that $\left|V_{\text {out }}\right|=0.5 \mathrm{~V}$ when no input signal is applied.
d) Repeat b) with R_{f} included.

$$
R=1 \mathrm{k} \Omega, C=1 \mathrm{nF}, A_{0}=105, \omega_{p}=10 \mathrm{rad} / \mathrm{s}
$$

(i)

(ii)

Fig. PS8. 2

